We characterize the semiregularity of the endomorphism ring of a module with respect to the ideal of endomorphisms with large kernel, and show some new classes of modules with semiregular endomorphism rings.
Applying the classical work of Nakayama [Ann. of Math. 40 (1939)], we exhibit a general form of non-Frobenius self-injective finite-dimensional algebras over a field.
We provide a characterization of all finite-dimensional selfinjective algebras over a field K which are socle equivalent to a prominent class of selfinjective algebras of tilted type.
We describe the structure of all selfinjective artin algebras having at least three nonperiodic generalized standard Auslander-Reiten components. In particular, all selfinjective artin algebras having a generalized standard Auslander-Reiten component of Euclidean type are described.
By an extension algebra of a finite-dimensional K-algebra A we mean a Hochschild extension algebra of A by the dual A-bimodule . We study the problem of when extension algebras of a K-algebra A are symmetric. (1) For an algebra A= KQ/I with an arbitrary finite quiver Q, we show a sufficient condition in terms of a 2-cocycle for an extension algebra to be symmetric. (2) Let L be a finite extension field of K. By using a given 2-cocycle of the K-algebra L, we construct a 2-cocycle of the K-algebra...
The strong global dimension of a finite dimensional algebra A is the maximum of the width of indecomposable bounded differential complexes of finite dimensional projective A-modules. We prove that the strong global dimension of a finite dimensional radical square zero algebra A over an algebraically closed field is finite if and only if A is piecewise hereditary. Moreover, we discuss results concerning the finiteness of the strong global dimension of algebras and the related problem on the density...
Download Results (CSV)