On a result of Adasch and Ernst.
Rodrigues’ extension (1989) of the classical Pták’s homomorphism theorem to a non-necessarily locally convex setting stated that a nearly semi-open mapping between a semi-B-complete space and an arbitrary topological vector space is semi-open. In this paper we study this extension and, as a consequence of the results obtained, provide an improvement of Pták’s homomorphism theorem.
If is a measurable space and a Banach space, we provide sufficient conditions on and in order to guarantee that , the Banach space of all -valued countably additive measures of bounded variation equipped with the variation norm, contains a copy of if and only if does.
Page 1