Embedding in
Juan Carlos Ferrando; L. M. Sánchez Ruiz
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 2, page 679-688
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFerrando, Juan Carlos, and Ruiz, L. M. Sánchez. "Embedding $c_0$ in ${\rm bvca}(\Sigma ,X)$." Czechoslovak Mathematical Journal 57.2 (2007): 679-688. <http://eudml.org/doc/31154>.
@article{Ferrando2007,
abstract = {If $(\Omega ,\Sigma ) $ is a measurable space and $X$ a Banach space, we provide sufficient conditions on $\Sigma $ and $X$ in order to guarantee that $\mathop \{\mathrm \{b\}vca\}( \Sigma ,X) $, the Banach space of all $X$-valued countably additive measures of bounded variation equipped with the variation norm, contains a copy of $c_\{0\}$ if and only if $X$ does.},
author = {Ferrando, Juan Carlos, Ruiz, L. M. Sánchez},
journal = {Czechoslovak Mathematical Journal},
keywords = {countably additive vector measure of bounded variation; Pettis integrable function space; copy of $c_\{0\}$; copy of $\ell _\{\infty \}$; Pettis integrable function space; copy of ; copy of },
language = {eng},
number = {2},
pages = {679-688},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Embedding $c_0$ in $\{\rm bvca\}(\Sigma ,X)$},
url = {http://eudml.org/doc/31154},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Ferrando, Juan Carlos
AU - Ruiz, L. M. Sánchez
TI - Embedding $c_0$ in ${\rm bvca}(\Sigma ,X)$
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 2
SP - 679
EP - 688
AB - If $(\Omega ,\Sigma ) $ is a measurable space and $X$ a Banach space, we provide sufficient conditions on $\Sigma $ and $X$ in order to guarantee that $\mathop {\mathrm {b}vca}( \Sigma ,X) $, the Banach space of all $X$-valued countably additive measures of bounded variation equipped with the variation norm, contains a copy of $c_{0}$ if and only if $X$ does.
LA - eng
KW - countably additive vector measure of bounded variation; Pettis integrable function space; copy of $c_{0}$; copy of $\ell _{\infty }$; Pettis integrable function space; copy of ; copy of
UR - http://eudml.org/doc/31154
ER -
References
top- An averaging result for -sequences, Bull. Soc. Math. Belg., Sér. B 30 (1978), 83–87. (1978) Zbl0417.46019MR0549653
- Banach Spaces of Vector-Valued Functions. Lecture Notes in Mathematics Vol. 1676, Springer-Verlag, Berlin, 1997. (1997) MR1489231
- Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer-Verlag, New York-Heidelberg-Berlin, 1984. (1984) MR0737004
- Vector Measures. Mathematical Surveys, No 15, Am. Math. Soc., Providence, 1977. (1977) MR0453964
- 10.1090/S0002-9939-1990-1012927-4, Proc. Am. Math. Soc. 109 (1990), 747–752. (1990) MR1012927DOI10.1090/S0002-9939-1990-1012927-4
- 10.7146/math.scand.a-12496, Math. Scand. 74 (1994), 271–274. (1994) MR1298368DOI10.7146/math.scand.a-12496
- Introduction to Banach Space, Matfyzpress, Prague, 1996. (1996)
- Real and Abstract Analysis. Graduate Texts in Mathematics 25, Springer-Verlag, New York-Heidelberg-Berlin, 1975. (1975) MR0367121
- 10.4064/sm-64-2-151-174, Stud. Math. 64 (1979), 151–173. (1979) Zbl0405.46015MR0537118DOI10.4064/sm-64-2-151-174
- 10.1090/conm/052/840704, Contemp. Math. 52 (1986), 131–135. (1986) DOI10.1090/conm/052/840704
- Quand l’espace des mesures a variation bornée est-it faiblement sequentiellement complet, Proc. Am. Math. Soc. 90 (1984), 285–288. (French) (1984) MR0727251
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.