The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 67

Showing per page

Order by Relevance | Title | Year of publication

A remark on hyper-indecomposable groups

Ladislav Bican — 1982

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Un gruppo abeliano senza torsione ed indecomponibile è detto iperindecomponibile se tutti i sottogruppi propri del suo inviluppo iniettivo che lo contengono sono indecomponibili. In questo lavoro si caratterizza la classe dei gruppi iperindecomponibili per mezzo di loro proprietà locali. I gruppi iperindecomponibili omogenei sono caratterizzati tramite la proprietà «factor-splitting».

A remark on hyper-indecomposable groups

Ladislav Bican — 1982

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Un gruppo abeliano senza torsione ed indecomponibile è detto iperindecomponibile se tutti i sottogruppi propri del suo inviluppo iniettivo che lo contengono sono indecomponibili. In questo lavoro si caratterizza la classe dei gruppi iperindecomponibili per mezzo di loro proprietà locali. I gruppi iperindecomponibili omogenei sono caratterizzati tramite la proprietà «factor-splitting».

Page 1 Next

Download Results (CSV)