The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

A spectral study of an infinite axisymmetric elastic layer

Lahcène Chorfi — 2001

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present here a theoretical study of eigenmodes in axisymmetric elastic layers. The mathematical modelling allows us to bring this problem to a spectral study of a sequence of unbounded self-adjoint operators A n , n , in a suitable Hilbert space. We show that the essential spectrum of A n is an interval of type [ γ , + [ and that, under certain conditions on the coefficients of the medium, the discrete spectrum is non empty.

A spectral study of an infinite axisymmetric elastic layer

Lahcène Chorfi — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

We present here a theoretical study of eigenmodes in axisymmetric elastic layers. The mathematical modelling allows us to bring this problem to a spectral study of a sequence of unbounded self-adjoint operators , n , in a suitable Hilbert space. We show that the essential spectrum of is an interval of type [ γ , + [ and that, under certain conditions on the coefficients of the medium, the discrete spectrum is non empty.

Page 1

Download Results (CSV)