The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

An accurate approximation of zeta-generalized-Euler-constant functions

Vito Lampret — 2010

Open Mathematics

Zeta-generalized-Euler-constant functions, γ s : = k = 1 1 k s - k k + 1 d x x s and γ ˜ s : = k = 1 - 1 k + 1 1 k s - k k + 1 d x x s defined on the closed interval [0, ∞), where γ(1) is the Euler-Mascheroni constant and γ ˜ (1) = ln 4 π , are studied and estimated with high accuracy.

An asymptotic approximation of Wallis’ sequence

Vito Lampret — 2012

Open Mathematics

An asymptotic approximation of Wallis’ sequence W(n) = Πk=1n 4k 2/(4k 2 − 1) obtained on the base of Stirling’s factorial formula is presented. As a consequence, several accurate new estimates of Wallis’ ratios w(n) = Πk=1n(2k−1)/(2k) are given. Also, an asymptotic approximation of π in terms of Wallis’ sequence W(n) is obtained, together with several double inequalities such as, for example, W ( n ) · ( a n + b n ) < π < W ( n ) · ( a n + b n ' ) with a n = 2 + 1 2 n + 1 + 2 3 ( 2 n + 1 ) 2 - 1 3 n ( 2 n + 1 ) ' b n = 2 33 ( n + 1 ) 2 ' b n ' 1 13 n 2 ' n .

Page 1

Download Results (CSV)