Analytic Cliffordian functions.
2000 Mathematics Subject Classification: 30A05, 33E05, 30G30, 30G35, 33E20. Let R0,2m+1 be the Clifford algebra of the antieuclidean 2m+1 dimensional space. The elliptic Cliffordian functions may be generated by the z2m+2 function, analogous to the well-known Weierstrass z-function. The latter satisfies a Legendre equality. We prove a corresponding formula at the level of the monogenic function Dm z2m+2.
It will be shown that the Stone-Weierstrass theorem for Clifford-valued functions is true for the case of even dimension. It remains valid for the odd dimension if we add a stability condition by principal automorphism.
The logarithmic derivative of the Γ-function, namely the ψ-function, has numerous applications. We define analogous functions in a four dimensional space. We cut lattices and obtain Clifford-valued functions. These functions are holomorphic cliffordian and have similar properties as the ψ-function. These new functions show links between well-known constants: the Eurler gamma constant and some generalisations, ζ(2), ζ(3). We get also the Riemann zeta function and the Epstein zeta functions.
Page 1