The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

Distribution de la constante d'Hermite et du plus court vecteur dans les réseaux de dimension deux

Henri LavilleBrigitte Vallée — 1994

Journal de théorie des nombres de Bordeaux

En utilisant la géométrie du demi-plan de Poincaré et des familles de disques classiques - disques de Ford, disques de Farey - nous décrivons les domaines de niveau associés à la constante d'Hermite et au plus court vecteur d'un réseau. Nous en déduisons une évaluation très précise des fonctions de répartition correspondantes, en particulier au voisinage de l'origine.

Stone-Weierstrass theorem

Guy LavilleIvan Ramadanoff — 1996

Banach Center Publications

It will be shown that the Stone-Weierstrass theorem for Clifford-valued functions is true for the case of even dimension. It remains valid for the odd dimension if we add a stability condition by principal automorphism.

Logarithmic derivative of the Euler Γ function in Clifford analysis.

Guy LavilleLouis Randriamihamison — 2005

Revista Matemática Iberoamericana

The logarithmic derivative of the Γ-function, namely the ψ-function, has numerous applications. We define analogous functions in a four dimensional space. We cut lattices and obtain Clifford-valued functions. These functions are holomorphic cliffordian and have similar properties as the ψ-function. These new functions show links between well-known constants: the Eurler gamma constant and some generalisations, ζ(2), ζ(3). We get also the Riemann zeta function and the Epstein zeta functions.

The Legendre Formula in Clifford Analysis

Laville, GuyRamadanoff, Ivan — 2009

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 30A05, 33E05, 30G30, 30G35, 33E20. Let R0,2m+1 be the Clifford algebra of the antieuclidean 2m+1 dimensional space. The elliptic Cliffordian functions may be generated by the z2m+2 function, analogous to the well-known Weierstrass z-function. The latter satisfies a Legendre equality. We prove a corresponding formula at the level of the monogenic function Dm z2m+2.

Page 1

Download Results (CSV)