Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

Distribution de la constante d'Hermite et du plus court vecteur dans les réseaux de dimension deux

Henri LavilleBrigitte Vallée — 1994

Journal de théorie des nombres de Bordeaux

En utilisant la géométrie du demi-plan de Poincaré et des familles de disques classiques - disques de Ford, disques de Farey - nous décrivons les domaines de niveau associés à la constante d'Hermite et au plus court vecteur d'un réseau. Nous en déduisons une évaluation très précise des fonctions de répartition correspondantes, en particulier au voisinage de l'origine.

Stone-Weierstrass theorem

Guy LavilleIvan Ramadanoff — 1996

Banach Center Publications

It will be shown that the Stone-Weierstrass theorem for Clifford-valued functions is true for the case of even dimension. It remains valid for the odd dimension if we add a stability condition by principal automorphism.

Logarithmic derivative of the Euler Γ function in Clifford analysis.

Guy LavilleLouis Randriamihamison — 2005

Revista Matemática Iberoamericana

The logarithmic derivative of the Γ-function, namely the ψ-function, has numerous applications. We define analogous functions in a four dimensional space. We cut lattices and obtain Clifford-valued functions. These functions are holomorphic cliffordian and have similar properties as the ψ-function. These new functions show links between well-known constants: the Eurler gamma constant and some generalisations, ζ(2), ζ(3). We get also the Riemann zeta function and the Epstein zeta functions.

The Legendre Formula in Clifford Analysis

Laville, GuyRamadanoff, Ivan — 2009

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 30A05, 33E05, 30G30, 30G35, 33E20. Let R0,2m+1 be the Clifford algebra of the antieuclidean 2m+1 dimensional space. The elliptic Cliffordian functions may be generated by the z2m+2 function, analogous to the well-known Weierstrass z-function. The latter satisfies a Legendre equality. We prove a corresponding formula at the level of the monogenic function Dm z2m+2.

Page 1

Download Results (CSV)