Initial value problems for nonlinear nonresonant delay differential equations with possibly infinite delay.
An energy analysis is carried out for the usual semidiscrete Galerkin method for the semilinear equation in the region (E) , subject to the initial and boundary conditions, on and . (E) is degenerate at and thus, even in the case , time derivatives of will blow up as . Also, in the case where is locally Lipschitz, solutions of (E) can blow up for in finite time. Stability and convergence of the scheme in is shown in the linear case without assuming (which can blow up as is...
We consider an uncoupled, modular regularization algorithm for approximation of the Navier-Stokes equations. The method is: Step 1.1: Advance the NSE one time step, Step 1.1: Regularize to obtain the approximation at the new time level. Previous analysis of this approach has been for specific time stepping methods in Step 1.1 and simple stabilizations in Step 1.1. In this report we extend the mathematical support for uncoupled, modular stabilization to (i) the more complex and better performing...
Page 1