Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains

Le HeYanyan Tang — 2024

Czechoslovak Mathematical Journal

We consider a class of unbounded nonhyperbolic complete Reinhardt domains D n , m , k μ , p , s : = ( z , w 1 , , w m ) n × k 1 × × k m : w 1 2 p 1 e - μ 1 z s + + w m 2 p m e - μ m z s < 1 , where s , p 1 , , p m , μ 1 , , μ m are positive real numbers and n , k 1 , , k m are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space A 2 ( D n , m , k μ , p , s ) , then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.

Page 1

Download Results (CSV)