Some results on fixed point theorems for multivalued mappings in complete metric spaces.
Let be a cone in a Hilbert space , be an accretive mapping (equivalently, be a dissipative mapping) and be a nonexpansive mapping. In this paper, some fixed point theorems for mappings of the type are established. As an application, we utilize the results presented in this paper to study the existence problem of solutions for some kind of nonlinear integral equations in .
In this paper, we establish some new versions of coincidence point theorems for single-valued and multi-valued mappings in F-type topological space. As applications, we utilize our main theorems to prove coincidence point theorems and fixed point theorems for single-valued and multi-valued mappings in fuzzy metric spaces and probabilistic metric spaces.
Let be a measurable space and a nonempty bounded closed convex separable subset of -uniformly convex Banach space for some . We prove random fixed point theorems for a class of mappings satisfying: for each , and integer , where are functions satisfying certain conditions and is the value at of the -th iterate of the mapping . Further we establish for these mappings some random fixed point theorems in a Hilbert space, in spaces, in Hardy spaces and in Sobolev spaces ...
Page 1