Positive Schatten-Herz class Toeplitz operators on the ball.
We study some algebraic properties of commutators of Toeplitz operators on the Hardy space of the bidisk. First, for two symbols where one is arbitrary and the other is (co-)analytic with respect to one fixed variable, we show that there is no nontrivial finite rank commutator. Also, for two symbols with separated variables, we prove that there is no nontrivial finite rank commutator or compact commutator in certain cases.
On the Hardy space of the unit disk, we consider operators which are finite sums of products of a Toeplitz operator and a Hankel operator. We then give characterizations for such operators to be zero. Our results extend several known results using completely different arguments.
We prove that two Toeplitz operators acting on the pluriharmonic Bergman space with radial symbol and pluriharmonic symbol respectively commute only in an obvious case.
On the harmonic Bergman space of the ball, we give characterizations for an arbitrary positive Toeplitz operator to be a Schatten class operator in terms of averaging functions and Berezin transforms.
We consider the reducibility and unitary equivalence of multiplication operators on the Dirichlet space. We first characterize reducibility of a multiplication operator induced by a finite Blaschke product and, as an application, we show that a multiplication operator induced by a Blaschke product with two zeros is reducible only in an obvious case. Also, we prove that a multiplication operator induced by a multiplier ϕ is unitarily equivalent to a weighted shift of multiplicity 2 if and only if...
Page 1