The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Polynômes à groupe de Galois diédral

Dominique MartinaisLeila Schneps — 1992

Journal de théorie des nombres de Bordeaux

Soit K un corps et K 1 une extension quadratique de K . Étant donné un polynôme P de K 1 [ X ] à groupe de Galois cyclique, nous donnons une méthode pour construire un polynôme Q de K [ X ] à groupe de Galois diédral, à partir des racines de P . Cette méthode est tout à fait explicite : nous donnons de nombreux exemples de polynômes à groupe de Galois diédral sur le corps .

Page 1

Download Results (CSV)