The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

The space of ANR’s in n

Tadeusz DobrowolskiLeonard Rubin — 1994

Fundamenta Mathematicae

The hyperspaces A N R ( n ) and A R ( n ) in 2 n ( n 3 ) consisting respectively of all compact absolute neighborhood retracts and all compact absolute retracts are studied. It is shown that both have the Borel type of absolute G δ σ δ -spaces and that, indeed, they are not F σ δ σ -spaces. The main result is that A N R ( n ) is an absorber for the class of all absolute G δ σ δ -spaces and is therefore homeomorphic to the standard model space Ω 3 of this class.

Inverse Sequences and Absolute Co-Extensors

Ivan IvanšićLeonard R. Rubin — 2007

Bulletin of the Polish Academy of Sciences. Mathematics

Suppose that K is a CW-complex, X is an inverse sequence of stratifiable spaces, and X = limX. Using the concept of semi-sequence, we provide a necessary and sufficient condition for X to be an absolute co-extensor for K in terms of the inverse sequence X and without recourse to any specific properties of its limit. To say that X is an absolute co-extensor for K is the same as saying that K is an absolute extensor for X, i.e., that each map f:A → K from a closed subset A of X extends to a map F:X...

Page 1

Download Results (CSV)