The space of ANR’s in n

Tadeusz Dobrowolski; Leonard Rubin

Fundamenta Mathematicae (1994)

  • Volume: 146, Issue: 1, page 31-58
  • ISSN: 0016-2736

Abstract

top
The hyperspaces A N R ( n ) and A R ( n ) in 2 n ( n 3 ) consisting respectively of all compact absolute neighborhood retracts and all compact absolute retracts are studied. It is shown that both have the Borel type of absolute G δ σ δ -spaces and that, indeed, they are not F σ δ σ -spaces. The main result is that A N R ( n ) is an absorber for the class of all absolute G δ σ δ -spaces and is therefore homeomorphic to the standard model space Ω 3 of this class.

How to cite

top

Dobrowolski, Tadeusz, and Rubin, Leonard. "The space of ANR’s in $ℝ^n$." Fundamenta Mathematicae 146.1 (1994): 31-58. <http://eudml.org/doc/212050>.

@article{Dobrowolski1994,
abstract = {The hyperspaces $ANR(ℝ^n)$ and $AR(ℝ^n)$ in $2^\{ℝ^n\} (n ≥ 3)$ consisting respectively of all compact absolute neighborhood retracts and all compact absolute retracts are studied. It is shown that both have the Borel type of absolute $G_\{δσ δ\}$-spaces and that, indeed, they are not $F_\{σ δσ \}$-spaces. The main result is that $ANR(ℝ^n)$ is an absorber for the class of all absolute $G_\{δσ δ\}$-spaces and is therefore homeomorphic to the standard model space $Ω_3$ of this class.},
author = {Dobrowolski, Tadeusz, Rubin, Leonard},
journal = {Fundamenta Mathematicae},
keywords = {hyperspace; absolute neighborhood retract; absolute retract; $G_\{δσ δ\}$-set; absorber; absorbing set},
language = {eng},
number = {1},
pages = {31-58},
title = {The space of ANR’s in $ℝ^n$},
url = {http://eudml.org/doc/212050},
volume = {146},
year = {1994},
}

TY - JOUR
AU - Dobrowolski, Tadeusz
AU - Rubin, Leonard
TI - The space of ANR’s in $ℝ^n$
JO - Fundamenta Mathematicae
PY - 1994
VL - 146
IS - 1
SP - 31
EP - 58
AB - The hyperspaces $ANR(ℝ^n)$ and $AR(ℝ^n)$ in $2^{ℝ^n} (n ≥ 3)$ consisting respectively of all compact absolute neighborhood retracts and all compact absolute retracts are studied. It is shown that both have the Borel type of absolute $G_{δσ δ}$-spaces and that, indeed, they are not $F_{σ δσ }$-spaces. The main result is that $ANR(ℝ^n)$ is an absorber for the class of all absolute $G_{δσ δ}$-spaces and is therefore homeomorphic to the standard model space $Ω_3$ of this class.
LA - eng
KW - hyperspace; absolute neighborhood retract; absolute retract; $G_{δσ δ}$-set; absorber; absorbing set
UR - http://eudml.org/doc/212050
ER -

References

top
  1. [BGvM] J. Baars, H. Gladdines and J. van Mill, Absorbing systems in infinite-dimensional manifolds, Topology Appl. 50 (1993), 147-182. Zbl0794.57005
  2. [BP] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975. Zbl0304.57001
  3. [BM] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional retracts, Michigan Math. J. 33 (1986), 291-313. Zbl0629.54011
  4. [Bor] K. Borsuk, On some metrizations of the hyperspace of compact sets, Fund. Math. 41 (1954), 168-202. Zbl0065.38102
  5. [C1] R. Cauty, L'espace des pseudo-arcs d'une surface, Trans. Amer. Math. Soc. 331 (1992), 247-263. 
  6. [C2] R. Cauty, L'espace des arcs d'une surface, ibid. 332 (1992), 193-209. Zbl0762.54012
  7. [C3] R. Cauty, Les fonctions continues et les fonctions intégrables au sens de Riemann comme sous-espaces de L 1 , Fund. Math. 139 (1991), 23-36. 
  8. [CDGvM] R. Cauty, T. Dobrowolski, H. Gladdines et J. van Mill, Les hyperespaces des rétractes absolus et des rétractes absolus de voisinage du plan, preprint. 
  9. [Cu1] D. W. Curtis, Hyperspaces of finite subsets as boundary sets, Topology Appl. 22 (1986), 97-107. Zbl0575.54009
  10. [Cu2] D. W. Curtis, Hyperspaces of non-compact metric spaces, Compositio Math. 40 (1986), 139-152. 
  11. [CN] D. W. Curtis and N. T. Nhu, Hyperspaces of finite subsets which are homeomorphic to 0 -dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260. Zbl0587.54015
  12. [DvMM] J. J. Dijkstra, J. van Mill and J. Mogilski, The space of infinite-dimensional compacta and other topological copies of ( f 2 ) ω , Pacific J. Math. 152 (1992), 255-273. Zbl0786.54012
  13. [DM] T. Dobrowolski and W. Marciszewski, Classification of function spaces with the pointwise topology determined by a countable dense set, preprint. Zbl0834.46016
  14. [DR] T. Dobrowolski and L. R. Rubin, The hyperspaces of infinite-dimensional compacta for covering and cohomological dimension are homeomorphic, Pacific J. Math. 164 (1994), 15-39. Zbl0801.54005
  15. [GvM] H. Gladdines and J. van Mill, Hyperspaces of Peano continua of euclidean spaces, Fund. Math. 142 (1993), 173-188. Zbl0811.54028
  16. [Kur1] K. Kuratowski, Sur une méthode de métrisation complète de certains espaces d'ensembles compacts, ibid. 43 (1956), 114-138. Zbl0071.38402
  17. [Kur2] K. Kuratowski, Topology I, Academic Press, New York and London, 1966. 
  18. [MS] S. Mardešić and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982. 
  19. [vM] J. van Mill, Infinite-Dimensional Topology: prerequisites and introduction, North-Holland, Amsterdam, 1989. 
  20. [SR] J. Saint Raymond, Fonctions boréliennes sur un quotient, Bull. Sci. Math. (2) 100 (1976), 141-147. Zbl0336.54015
  21. [Tor] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l 2 -manifolds, Fund. Math. 101 (1978), 93-110. Zbl0406.55003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.