The space of ANR’s in
Tadeusz Dobrowolski; Leonard Rubin
Fundamenta Mathematicae (1994)
- Volume: 146, Issue: 1, page 31-58
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topDobrowolski, Tadeusz, and Rubin, Leonard. "The space of ANR’s in $ℝ^n$." Fundamenta Mathematicae 146.1 (1994): 31-58. <http://eudml.org/doc/212050>.
@article{Dobrowolski1994,
abstract = {The hyperspaces $ANR(ℝ^n)$ and $AR(ℝ^n)$ in $2^\{ℝ^n\} (n ≥ 3)$ consisting respectively of all compact absolute neighborhood retracts and all compact absolute retracts are studied. It is shown that both have the Borel type of absolute $G_\{δσ δ\}$-spaces and that, indeed, they are not $F_\{σ δσ \}$-spaces. The main result is that $ANR(ℝ^n)$ is an absorber for the class of all absolute $G_\{δσ δ\}$-spaces and is therefore homeomorphic to the standard model space $Ω_3$ of this class.},
author = {Dobrowolski, Tadeusz, Rubin, Leonard},
journal = {Fundamenta Mathematicae},
keywords = {hyperspace; absolute neighborhood retract; absolute retract; $G_\{δσ δ\}$-set; absorber; absorbing set},
language = {eng},
number = {1},
pages = {31-58},
title = {The space of ANR’s in $ℝ^n$},
url = {http://eudml.org/doc/212050},
volume = {146},
year = {1994},
}
TY - JOUR
AU - Dobrowolski, Tadeusz
AU - Rubin, Leonard
TI - The space of ANR’s in $ℝ^n$
JO - Fundamenta Mathematicae
PY - 1994
VL - 146
IS - 1
SP - 31
EP - 58
AB - The hyperspaces $ANR(ℝ^n)$ and $AR(ℝ^n)$ in $2^{ℝ^n} (n ≥ 3)$ consisting respectively of all compact absolute neighborhood retracts and all compact absolute retracts are studied. It is shown that both have the Borel type of absolute $G_{δσ δ}$-spaces and that, indeed, they are not $F_{σ δσ }$-spaces. The main result is that $ANR(ℝ^n)$ is an absorber for the class of all absolute $G_{δσ δ}$-spaces and is therefore homeomorphic to the standard model space $Ω_3$ of this class.
LA - eng
KW - hyperspace; absolute neighborhood retract; absolute retract; $G_{δσ δ}$-set; absorber; absorbing set
UR - http://eudml.org/doc/212050
ER -
References
top- [BGvM] J. Baars, H. Gladdines and J. van Mill, Absorbing systems in infinite-dimensional manifolds, Topology Appl. 50 (1993), 147-182. Zbl0794.57005
- [BP] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975. Zbl0304.57001
- [BM] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional retracts, Michigan Math. J. 33 (1986), 291-313. Zbl0629.54011
- [Bor] K. Borsuk, On some metrizations of the hyperspace of compact sets, Fund. Math. 41 (1954), 168-202. Zbl0065.38102
- [C1] R. Cauty, L'espace des pseudo-arcs d'une surface, Trans. Amer. Math. Soc. 331 (1992), 247-263.
- [C2] R. Cauty, L'espace des arcs d'une surface, ibid. 332 (1992), 193-209. Zbl0762.54012
- [C3] R. Cauty, Les fonctions continues et les fonctions intégrables au sens de Riemann comme sous-espaces de , Fund. Math. 139 (1991), 23-36.
- [CDGvM] R. Cauty, T. Dobrowolski, H. Gladdines et J. van Mill, Les hyperespaces des rétractes absolus et des rétractes absolus de voisinage du plan, preprint.
- [Cu1] D. W. Curtis, Hyperspaces of finite subsets as boundary sets, Topology Appl. 22 (1986), 97-107. Zbl0575.54009
- [Cu2] D. W. Curtis, Hyperspaces of non-compact metric spaces, Compositio Math. 40 (1986), 139-152.
- [CN] D. W. Curtis and N. T. Nhu, Hyperspaces of finite subsets which are homeomorphic to -dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260. Zbl0587.54015
- [DvMM] J. J. Dijkstra, J. van Mill and J. Mogilski, The space of infinite-dimensional compacta and other topological copies of , Pacific J. Math. 152 (1992), 255-273. Zbl0786.54012
- [DM] T. Dobrowolski and W. Marciszewski, Classification of function spaces with the pointwise topology determined by a countable dense set, preprint. Zbl0834.46016
- [DR] T. Dobrowolski and L. R. Rubin, The hyperspaces of infinite-dimensional compacta for covering and cohomological dimension are homeomorphic, Pacific J. Math. 164 (1994), 15-39. Zbl0801.54005
- [GvM] H. Gladdines and J. van Mill, Hyperspaces of Peano continua of euclidean spaces, Fund. Math. 142 (1993), 173-188. Zbl0811.54028
- [Kur1] K. Kuratowski, Sur une méthode de métrisation complète de certains espaces d'ensembles compacts, ibid. 43 (1956), 114-138. Zbl0071.38402
- [Kur2] K. Kuratowski, Topology I, Academic Press, New York and London, 1966.
- [MS] S. Mardešić and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
- [vM] J. van Mill, Infinite-Dimensional Topology: prerequisites and introduction, North-Holland, Amsterdam, 1989.
- [SR] J. Saint Raymond, Fonctions boréliennes sur un quotient, Bull. Sci. Math. (2) 100 (1976), 141-147. Zbl0336.54015
- [Tor] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of -manifolds, Fund. Math. 101 (1978), 93-110. Zbl0406.55003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.