The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On the Bethe-Sommerfeld conjecture

Leonid ParnovskiAlexander V. Sobolev — 2000

Journées équations aux dérivées partielles

We consider the operator in d , d 2 , of the form H = ( - Δ ) l + V , l > 0 with a function V periodic with respect to a lattice in d . We prove that the number of gaps in the spectrum of H is finite if 8 l > d + 3 . Previously the finiteness of the number of gaps was known for 4 l > d + 1 . Various approaches to this problem are discussed.

Page 1

Download Results (CSV)