On the Bethe-Sommerfeld conjecture

Leonid Parnovski; Alexander V. Sobolev

Journées équations aux dérivées partielles (2000)

  • page 1-13
  • ISSN: 0752-0360

Abstract

top
We consider the operator in d , d 2 , of the form H = ( - Δ ) l + V , l > 0 with a function V periodic with respect to a lattice in d . We prove that the number of gaps in the spectrum of H is finite if 8 l > d + 3 . Previously the finiteness of the number of gaps was known for 4 l > d + 1 . Various approaches to this problem are discussed.

How to cite

top

Parnovski, Leonid, and Sobolev, Alexander V.. "On the Bethe-Sommerfeld conjecture." Journées équations aux dérivées partielles (2000): 1-13. <http://eudml.org/doc/93394>.

@article{Parnovski2000,
abstract = {We consider the operator in $\mathbb \{R\}^d, d\ge 2$, of the form $H = (-\Delta )^l+V, l&gt;0$ with a function $V$ periodic with respect to a lattice in $\mathbb \{R\}^d$. We prove that the number of gaps in the spectrum of $H$ is finite if $8l&gt;d+3$. Previously the finiteness of the number of gaps was known for $4l&gt;d+1$. Various approaches to this problem are discussed.},
author = {Parnovski, Leonid, Sobolev, Alexander V.},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-13},
publisher = {Université de Nantes},
title = {On the Bethe-Sommerfeld conjecture},
url = {http://eudml.org/doc/93394},
year = {2000},
}

TY - JOUR
AU - Parnovski, Leonid
AU - Sobolev, Alexander V.
TI - On the Bethe-Sommerfeld conjecture
JO - Journées équations aux dérivées partielles
PY - 2000
PB - Université de Nantes
SP - 1
EP - 13
AB - We consider the operator in $\mathbb {R}^d, d\ge 2$, of the form $H = (-\Delta )^l+V, l&gt;0$ with a function $V$ periodic with respect to a lattice in $\mathbb {R}^d$. We prove that the number of gaps in the spectrum of $H$ is finite if $8l&gt;d+3$. Previously the finiteness of the number of gaps was known for $4l&gt;d+1$. Various approaches to this problem are discussed.
LA - eng
UR - http://eudml.org/doc/93394
ER -

References

top
  1. [1] V. Bentkus, F. Götze, On the lattice point problem for ellipsoids, Acta Arithm. 80 (1997), 101-125. Zbl0871.11069MR98h:11120
  2. [2] B.E.J. Dahlberg, E. Trubowitz, A remark on two dimensional periodic potentials, Comment. Math. Helvetici 57 (1982), 130-134. Zbl0539.35059MR84h:35119
  3. [3] P. Erdős, P.M. Gruber, J. Hammer, Lattice points, Longman 1987. 
  4. [4] F. Götze, Lattice point problems and the central limit theorem in Eucledian spaces, Documenta Mathematica, Extra Volume ICM 1998, III, 5245-255. Zbl0906.60023
  5. [5] E.L Green, Spectral theory of Laplace-Beltrami operators with periodic metrics, J. Diff. Eq. 133 (1997), 15-29. Zbl0924.35087MR97k:58168
  6. [6] B. Helffer, A. Mohamed, Asymptotics of the density of states for the Schrödinger operator with periodic electric potential, Duke Math. J. 92 (1998), 1-60. Zbl0951.35104MR99e:35166
  7. [7] V. Jarnik, Sur les points à coordonnées entières dans les ellipsoïdes à plusieurs dimensions, Bull. Intern. Acad. Sci. Bohéme (1928). Zbl56.0176.03
  8. [8] Yu. E. Karpeshina, Analytic perturbation theory for a periodic potential, Izv. Akad. Nauk SSSR Ser. Mat., 53 (1989), No 1, 45-65 ; English transl. : Math. USSR Izv., 34 (1990), No 1, 43-63. Zbl0689.35065
  9. [9] Yu. E. Karpeshina, Perturbation theory for the Schrödinger operator with a periodic potential, Lecture Notes in Math. vol 1663, Springer Berlin 1997. Zbl0883.35002
  10. [10] D.G. Kendall, R.A. Rankin, On the number of points of a given lattice in a random hypersphere, Quart. J. Math. Oxford 2, 4 (1953), 178-189. Zbl0052.14503MR15,237g
  11. [11] E. Krätzel, W.G. Nowak, Lattice points in large convex bodies, II, Acta Arithmetica, 62 (1992), 285-295. Zbl0769.11037MR93m:11102
  12. [12] P. Kuchment, Floquet theory for partial differential equations, Birkhäuser, Basel, 1993. Zbl0789.35002MR94h:35002
  13. [13] E. Landau, Zur analytischen Zahlentheorie der definiten quadratischen Formen (Über die Gitterpunkte in einem mehrdimensionalen Ellipsoid), Sitzber. Preuss. Akad. Wiss. 31 (1915), 458-476. JFM45.0334.09
  14. [14] E. Landau, Über die Gitterpunkte in einem mehrdimensionalen Ellipsoid, Math. Z. 21 (1924), 126-132. Zbl50.0118.01JFM50.0118.01
  15. [15] A. Mohamed, Asymptotics of the density of states for the Schrödinger operator with periodic electromagnetic potential, J. Math. Phys. 38 (1997), 4023-4051. Zbl0883.47045MR99d:81036
  16. [16] L. Parnovski, A.V. Sobolev, On the Bethe-Sommerfeld conjecture for the polyharmonic operator, to appear in Duke Math. J. Zbl1092.35025
  17. [17] L. Parnovski, A.V. Sobolev, Perturbation theory and the Bethe-Sommerfeld conjecture, CMAIA report No : 2000-05, 2000. 
  18. [18] V.N. Popov, M. Skriganov, A remark on the spectral structure of the two dimensional Schrödinger operator with a periodic potential, Zap. Nauchn. Sem. LOMI AN SSSR 109 (1981), 131-133 (Russian). Zbl0492.47024MR83a:35074
  19. [19] M. Reed, B. Simon, Methods of modern mathematical physics, IV, Academic Press, New York, 1975. Zbl0308.47002
  20. [20] M. Skriganov, Finiteness of the number of gaps in the spectrum of the multi-dimensional polyharmonic operator with a periodic potential, Mat. Sb. 113 (155) (1980), 131-145 ; Engl. transl. : Math. USSR Sb. 41 (1982). Zbl0464.35064
  21. [21] M. Skriganov, Geometrical and arithmetical methods in the spectral theory of the multi-dimensional periodic operators, Proc. Steklov Math. Inst. Vol. 171, 1984. Zbl0615.47004
  22. [22] M. Skriganov, The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Inv. Math. 80 (1985), 107-121. Zbl0578.47003MR86i:35107
  23. [23] O.A. Veliev, Asymptotic formulas for the eigenvalues of a periodic Schrödinger operator and the Bethe-Sommerfeld conjecture, Funkt. Anal. i Prilozhen. 21 (1987), 1-15 (in Russian) ; Engl. transl. : Functional Anal. Appl. 21 (1987), 87-99. Zbl0638.47049
  24. [24] N.N. Yakovlev, Asymptotic estimates of the densities of lattice k-packings and k-coverings, and the structure of the spectrum of the Schrödinger operator with a periodic potential, Dokl. Akad. Nauk SSSR, 276 (1984), No 1 ; English transl. : Soviet Math. Dokl., 29 (1984), No 3, 457-460. Zbl0621.35029
  25. [25] N.N. Yakovlev, On spectra of multi-dimensional pseudo-differential periodic operators, Vestn. Mosk. Univ. Ser. 1 Mat, Mekh, No 3 (1985), 80-81 (Russian). Zbl0585.47040MR87f:35191

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.