On the Bethe-Sommerfeld conjecture
Leonid Parnovski; Alexander V. Sobolev
Journées équations aux dérivées partielles (2000)
- page 1-13
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topParnovski, Leonid, and Sobolev, Alexander V.. "On the Bethe-Sommerfeld conjecture." Journées équations aux dérivées partielles (2000): 1-13. <http://eudml.org/doc/93394>.
@article{Parnovski2000,
abstract = {We consider the operator in $\mathbb \{R\}^d, d\ge 2$, of the form $H = (-\Delta )^l+V, l>0$ with a function $V$ periodic with respect to a lattice in $\mathbb \{R\}^d$. We prove that the number of gaps in the spectrum of $H$ is finite if $8l>d+3$. Previously the finiteness of the number of gaps was known for $4l>d+1$. Various approaches to this problem are discussed.},
author = {Parnovski, Leonid, Sobolev, Alexander V.},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-13},
publisher = {Université de Nantes},
title = {On the Bethe-Sommerfeld conjecture},
url = {http://eudml.org/doc/93394},
year = {2000},
}
TY - JOUR
AU - Parnovski, Leonid
AU - Sobolev, Alexander V.
TI - On the Bethe-Sommerfeld conjecture
JO - Journées équations aux dérivées partielles
PY - 2000
PB - Université de Nantes
SP - 1
EP - 13
AB - We consider the operator in $\mathbb {R}^d, d\ge 2$, of the form $H = (-\Delta )^l+V, l>0$ with a function $V$ periodic with respect to a lattice in $\mathbb {R}^d$. We prove that the number of gaps in the spectrum of $H$ is finite if $8l>d+3$. Previously the finiteness of the number of gaps was known for $4l>d+1$. Various approaches to this problem are discussed.
LA - eng
UR - http://eudml.org/doc/93394
ER -
References
top- [1] V. Bentkus, F. Götze, On the lattice point problem for ellipsoids, Acta Arithm. 80 (1997), 101-125. Zbl0871.11069MR98h:11120
- [2] B.E.J. Dahlberg, E. Trubowitz, A remark on two dimensional periodic potentials, Comment. Math. Helvetici 57 (1982), 130-134. Zbl0539.35059MR84h:35119
- [3] P. Erdős, P.M. Gruber, J. Hammer, Lattice points, Longman 1987.
- [4] F. Götze, Lattice point problems and the central limit theorem in Eucledian spaces, Documenta Mathematica, Extra Volume ICM 1998, III, 5245-255. Zbl0906.60023
- [5] E.L Green, Spectral theory of Laplace-Beltrami operators with periodic metrics, J. Diff. Eq. 133 (1997), 15-29. Zbl0924.35087MR97k:58168
- [6] B. Helffer, A. Mohamed, Asymptotics of the density of states for the Schrödinger operator with periodic electric potential, Duke Math. J. 92 (1998), 1-60. Zbl0951.35104MR99e:35166
- [7] V. Jarnik, Sur les points à coordonnées entières dans les ellipsoïdes à plusieurs dimensions, Bull. Intern. Acad. Sci. Bohéme (1928). Zbl56.0176.03
- [8] Yu. E. Karpeshina, Analytic perturbation theory for a periodic potential, Izv. Akad. Nauk SSSR Ser. Mat., 53 (1989), No 1, 45-65 ; English transl. : Math. USSR Izv., 34 (1990), No 1, 43-63. Zbl0689.35065
- [9] Yu. E. Karpeshina, Perturbation theory for the Schrödinger operator with a periodic potential, Lecture Notes in Math. vol 1663, Springer Berlin 1997. Zbl0883.35002
- [10] D.G. Kendall, R.A. Rankin, On the number of points of a given lattice in a random hypersphere, Quart. J. Math. Oxford 2, 4 (1953), 178-189. Zbl0052.14503MR15,237g
- [11] E. Krätzel, W.G. Nowak, Lattice points in large convex bodies, II, Acta Arithmetica, 62 (1992), 285-295. Zbl0769.11037MR93m:11102
- [12] P. Kuchment, Floquet theory for partial differential equations, Birkhäuser, Basel, 1993. Zbl0789.35002MR94h:35002
- [13] E. Landau, Zur analytischen Zahlentheorie der definiten quadratischen Formen (Über die Gitterpunkte in einem mehrdimensionalen Ellipsoid), Sitzber. Preuss. Akad. Wiss. 31 (1915), 458-476. JFM45.0334.09
- [14] E. Landau, Über die Gitterpunkte in einem mehrdimensionalen Ellipsoid, Math. Z. 21 (1924), 126-132. Zbl50.0118.01JFM50.0118.01
- [15] A. Mohamed, Asymptotics of the density of states for the Schrödinger operator with periodic electromagnetic potential, J. Math. Phys. 38 (1997), 4023-4051. Zbl0883.47045MR99d:81036
- [16] L. Parnovski, A.V. Sobolev, On the Bethe-Sommerfeld conjecture for the polyharmonic operator, to appear in Duke Math. J. Zbl1092.35025
- [17] L. Parnovski, A.V. Sobolev, Perturbation theory and the Bethe-Sommerfeld conjecture, CMAIA report No : 2000-05, 2000.
- [18] V.N. Popov, M. Skriganov, A remark on the spectral structure of the two dimensional Schrödinger operator with a periodic potential, Zap. Nauchn. Sem. LOMI AN SSSR 109 (1981), 131-133 (Russian). Zbl0492.47024MR83a:35074
- [19] M. Reed, B. Simon, Methods of modern mathematical physics, IV, Academic Press, New York, 1975. Zbl0308.47002
- [20] M. Skriganov, Finiteness of the number of gaps in the spectrum of the multi-dimensional polyharmonic operator with a periodic potential, Mat. Sb. 113 (155) (1980), 131-145 ; Engl. transl. : Math. USSR Sb. 41 (1982). Zbl0464.35064
- [21] M. Skriganov, Geometrical and arithmetical methods in the spectral theory of the multi-dimensional periodic operators, Proc. Steklov Math. Inst. Vol. 171, 1984. Zbl0615.47004
- [22] M. Skriganov, The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Inv. Math. 80 (1985), 107-121. Zbl0578.47003MR86i:35107
- [23] O.A. Veliev, Asymptotic formulas for the eigenvalues of a periodic Schrödinger operator and the Bethe-Sommerfeld conjecture, Funkt. Anal. i Prilozhen. 21 (1987), 1-15 (in Russian) ; Engl. transl. : Functional Anal. Appl. 21 (1987), 87-99. Zbl0638.47049
- [24] N.N. Yakovlev, Asymptotic estimates of the densities of lattice k-packings and k-coverings, and the structure of the spectrum of the Schrödinger operator with a periodic potential, Dokl. Akad. Nauk SSSR, 276 (1984), No 1 ; English transl. : Soviet Math. Dokl., 29 (1984), No 3, 457-460. Zbl0621.35029
- [25] N.N. Yakovlev, On spectra of multi-dimensional pseudo-differential periodic operators, Vestn. Mosk. Univ. Ser. 1 Mat, Mekh, No 3 (1985), 80-81 (Russian). Zbl0585.47040MR87f:35191
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.