The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

An Osserman-type condition on g.f.f-manifolds with Lorentz metric

Letizia Brunetti — 2014

Annales Polonici Mathematici

A condition of Osserman type, called the φ-null Osserman condition, is introduced and studied in the context of Lorentz globally framed f-manifolds. An explicit example shows the naturality of this condition in the setting of Lorentz 𝓢-manifolds. We prove that a Lorentz 𝓢-manifold with constant φ-sectional curvature is φ-null Osserman, extending a well-known result in the case of Lorentz Sasaki space forms. Then we state a characterization of a particular class of φ-null Osserman 𝓢-manifolds....

Curvature properties of φ-null Osserman Lorentzian S-manifolds

Letizia BrunettiAngelo Caldarella — 2014

Open Mathematics

We expound some results about the relationships between the Jacobi operators with respect to null vectors on a Lorentzian S-manifold and the Jacobi operators with respect to particular spacelike unit vectors. We study the number of the eigenvalues of such operators on Lorentzian S-manifolds satisfying the φ-null Osserman condition, under suitable assumptions on the dimension of the manifold. Then, we provide in full generality a new curvature characterization for Lorentzian S-manifolds and we use...

Page 1

Download Results (CSV)