Distribution of points on arcs.
Let two lattices have the same number of points on each hyperbolic surface . We investigate the case when Λ’, Λ” are sublattices of of the same prime index and show that then Λ’ and Λ” must coincide up to renumbering the coordinate axes and changing their directions.
We present a system of interrelated conjectures which can be considered as restricted addition counterparts of classical theorems due to Kneser, Kemperman, and Scherk. Connections with the theorem of Cauchy-Davenport, conjecture of Erdős-Heilbronn, and polynomial method of Alon-Nathanson-Ruzsa are discussed. The paper assumes no expertise from the reader and can serve as an introduction to the subject.
What is the structure of a pair of finite integers sets A,B ⊂ ℤ with the small value of |A+B|? We answer this question for addition coefficient 3. The obtained theorem sharpens the corresponding results of G. Freiman.
We show that if A and B are finite sets of real numbers, then the number of triples (a,b,c) ∈ A × B × (A ∪ B) with a + b = 2c is at most (0.15+o(1))(|A|+|B|)² as |A| + |B| → ∞. As a corollary, if A is antisymmetric (that is, A ∩ (-A) = ∅), then there are at most (0.3+o(1))|A|² triples (a,b,c) with a,b,c ∈ A and a - b = 2c. In the general case where A is not necessarily antisymmetric, we show that the number of triples (a,b,c) with a,b,c ∈ A and a - b = 2c is at most (0.5+o(1))|A|². These estimates...
Let be a finite subset of an abelian group and let be a closed half-plane of the complex plane, containing zero. We show that (unless possesses a special, explicitly indicated structure) there exists a non-trivial Fourier coefficient of the indicator function of which belongs to . In other words, there exists a non-trivial character such that .
Page 1