Reduction and irreducibility for words and tree-words
A lamination is a continuum which locally is the product of a Cantor set and an arc. We investigate the topological structure and embedding properties of laminations. We prove that a nondegenerate lamination cannot be tree-like and that a planar lamination has at least four complementary domains. Furthermore, a lamination in the plane can be obtained by a lakes of Wada construction.
It is known that every homeomorphism of the plane which admits an invariant non-separating continuum has a fixed point in the continuum. In this paper we show that any branched covering map of the plane of degree d, |d| ≤ 2, which has an invariant, non-separating continuum Y, either has a fixed point in Y, or is such that Y contains a minimal (in the sense of inclusion among invariant continua), fully invariant, non-separating subcontinuum X. In the latter case, f has to be of degree -2 and X has...
The Cantor set and the set of irrational numbers are examples of 0-dimensional, totally disconnected, homogeneous spaces which admit elegant characterizations and which play a crucial role in analysis and dynamical systems. In this paper we will start the study of 1-dimensional, totally disconnected, homogeneous spaces. We will provide a characterization of such spaces and use it to show that many examples of such spaces which exist in the literature in various fields are all homeomorphic. In particular,...
For any class 𝒦 of compacta and any compactum X we say that: (a) X is confluently 𝒦-representable if X is homeomorphic to the inverse limit of an inverse sequence of members of 𝒦 with confluent bonding mappings, and (b) X is confluently 𝒦-like provided that X admits, for every ε >0, a confluent ε-mapping onto a member of 𝒦. The symbol 𝕃ℂ stands for the class of all locally connected compacta. It is proved in this paper that for each compactum X and each family 𝒦 of graphs, X is confluently...
CONTENTS1. Introduction.................................................................................................................................................52. Partitioning Peano continua......................................................................................................................103. Peano continua and cross-connectedness...............................................................................................184. The characterization of the Menger curve.................................................................................................285....
Page 1