The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
By iterating the Bolyai-Rényi transformation , almost every real number can be expanded as a continued radical expression
with digits for all . For any real number and digit , let be the maximal length of consecutive ’s in the first digits of the Bolyai-Rényi expansion of . We study the asymptotic behavior of the run-length function . We prove that for any digit , the Lebesgue measure of the set
is , where . We also obtain that the level set
is of full Hausdorff dimension...
We discuss the rigidity of Einstein manifolds and generalized quasi-Einstein manifolds. We improve a pinching condition used in a theorem on the rigidity of compact Einstein manifolds. Under an additional condition, we confirm a conjecture on the rigidity of compact Einstein manifolds. In addition, we prove that every closed generalized quasi-Einstein manifold is an Einstein manifold provided μ = -1/(n-2), λ ≤ 0 and β ≤ 0.
Download Results (CSV)