Run-length function of the Bolyai-Rényi expansion of real numbers
Czechoslovak Mathematical Journal (2024)
- Issue: 1, page 319-335
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Rao, Lü, Fan, and Zhou, Li. "Run-length function of the Bolyai-Rényi expansion of real numbers." Czechoslovak Mathematical Journal (2024): 319-335. <http://eudml.org/doc/299246>.
@article{Li2024,
abstract = {By iterating the Bolyai-Rényi transformation $T(x)=(x+1)^\{2\} \hspace\{4.44443pt\}(\@mod \; 1)$, almost every real number $x\in [0,1)$ can be expanded as a continued radical expression \[ x=-1+\sqrt\{x\_\{1\}+\sqrt\{x\_\{2\}+\cdots +\sqrt\{x\_\{n\}+\cdots \}\}\} \]
with digits $x_\{n\}\in \lbrace 0,1,2\rbrace $ for all $n\in \mathbb \{N\}$. For any real number $x\in [0,1)$ and digit $i\in \lbrace 0,1,2\rbrace $, let $r_\{n\}(x,i)$ be the maximal length of consecutive $i$’s in the first $n$ digits of the Bolyai-Rényi expansion of $x$. We study the asymptotic behavior of the run-length function $r_\{n\}(x,i)$. We prove that for any digit $i\in \lbrace 0,1,2\rbrace $, the Lebesgue measure of the set \[ D(i)=\Bigl \lbrace x\in [0,1)\colon \lim \_\{n\rightarrow \infty \} \frac\{r\_n(x,i)\}\{\log n\}=\frac\{1\}\{\log \theta \_\{i\}\} \Bigr \rbrace \]
is $1$, where $\theta _\{i\}=1+\sqrt\{4i+1\}$. We also obtain that the level set \[ E\_\{\alpha \}(i)=\Bigl \lbrace x\in [0,1)\colon \lim \_\{n\rightarrow \infty \} \frac\{r\_n(x,i)\}\{\log n\}=\alpha \Bigr \rbrace \]
is of full Hausdorff dimension for any $0\le \alpha \le \infty $.},
author = {Li, Rao, Lü, Fan, Zhou, Li},
journal = {Czechoslovak Mathematical Journal},
keywords = {run-length function; Bolyai-Rényi expansion; Lebesgue measure; Hausdorff dimension},
language = {eng},
number = {1},
pages = {319-335},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Run-length function of the Bolyai-Rényi expansion of real numbers},
url = {http://eudml.org/doc/299246},
year = {2024},
}
TY - JOUR
AU - Li, Rao
AU - Lü, Fan
AU - Zhou, Li
TI - Run-length function of the Bolyai-Rényi expansion of real numbers
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 319
EP - 335
AB - By iterating the Bolyai-Rényi transformation $T(x)=(x+1)^{2} \hspace{4.44443pt}(\@mod \; 1)$, almost every real number $x\in [0,1)$ can be expanded as a continued radical expression \[ x=-1+\sqrt{x_{1}+\sqrt{x_{2}+\cdots +\sqrt{x_{n}+\cdots }}} \]
with digits $x_{n}\in \lbrace 0,1,2\rbrace $ for all $n\in \mathbb {N}$. For any real number $x\in [0,1)$ and digit $i\in \lbrace 0,1,2\rbrace $, let $r_{n}(x,i)$ be the maximal length of consecutive $i$’s in the first $n$ digits of the Bolyai-Rényi expansion of $x$. We study the asymptotic behavior of the run-length function $r_{n}(x,i)$. We prove that for any digit $i\in \lbrace 0,1,2\rbrace $, the Lebesgue measure of the set \[ D(i)=\Bigl \lbrace x\in [0,1)\colon \lim _{n\rightarrow \infty } \frac{r_n(x,i)}{\log n}=\frac{1}{\log \theta _{i}} \Bigr \rbrace \]
is $1$, where $\theta _{i}=1+\sqrt{4i+1}$. We also obtain that the level set \[ E_{\alpha }(i)=\Bigl \lbrace x\in [0,1)\colon \lim _{n\rightarrow \infty } \frac{r_n(x,i)}{\log n}=\alpha \Bigr \rbrace \]
is of full Hausdorff dimension for any $0\le \alpha \le \infty $.
LA - eng
KW - run-length function; Bolyai-Rényi expansion; Lebesgue measure; Hausdorff dimension
UR - http://eudml.org/doc/299246
ER -
References
top- Erdős, P., Rényi, A., 10.1007/BF02795493, J. Anal. Math. 23 (1970), 103-111. (1970) Zbl0225.60015MR0272026DOI10.1007/BF02795493
- Falconer, K., 10.1002/0470013850, John Wiley & Sons, Chichester (2014). (2014) Zbl1285.28011MR3236784DOI10.1002/0470013850
- Jenkinson, O., Pollicott, M., 10.1016/S0019-3577(00)80006-3, Indag. Math., New Ser. 11 (2000), 399-418. (2000) Zbl0977.11032MR1813480DOI10.1016/S0019-3577(00)80006-3
- Ma, J.-H., Wen, S.-Y., Wen, Z.-Y., 10.1007/s00605-007-0455-7, Monatsh. Math. 151 (2007), 287-292. (2007) Zbl1170.28001MR2329089DOI10.1007/s00605-007-0455-7
- Philipp, W., 10.2140/pjm.1967.20.109, Pac. J. Math. 20 (1967), 109-127. (1967) Zbl0144.04201MR0205930DOI10.2140/pjm.1967.20.109
- Rényi, A., 10.1007/BF02020331, Acta Math. Acad. Sci. Hung. 8 (1957), 477-493. (1957) Zbl0079.08901MR0097374DOI10.1007/BF02020331
- Song, T., Zhou, Q., 10.1017/S0004972720000076, Bull. Aust. Math. Soc. 102 (2020), 196-206. (2020) Zbl1464.11080MR4138819DOI10.1017/S0004972720000076
- Sun, Y., Xu, J., 10.21136/CMJ.2018.0474-16, Czech. Math. J. 68 (2018), 277-291. (2018) Zbl1458.11125MR3783599DOI10.21136/CMJ.2018.0474-16
- Tong, X., Yu, Y., Zhao, Y., 10.1142/S1793042116500408, Int. J. Number Theory 12 (2016), 625-633. (2016) Zbl1337.11053MR3477410DOI10.1142/S1793042116500408
- Wang, B.-W., Wu, J., On the maximal run-length function in continued fractions, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 34 (2011), 247-268. (2011)
- Zou, R., 10.1007/s10587-011-0055-5, Czech. Math. J. 61 (2011), 881-888. (2011) Zbl1249.11085MR2886243DOI10.1007/s10587-011-0055-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.