The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This paper presents some generalizations of BCI algebras (the RM, tRM, *RM, RM**, *RM**, aRM**, *aRM**, BCH**, BZ, pre-BZ and pre-BCI algebras). We investigate the p-semisimple property for algebras mentioned above; give some examples and display various conditions equivalent to p-semisimplicity. Finally, we present a model of mereology without antisymmetry (NAM) which could represent a tRM algebra.
Algebraic structures such as Rings, Fields, Boolean Algebras (Set Theory) and -Fields are well known and much has been written about them. In this paper we explore some properties of rings related to the distribution law. Specifically, we shall show that for rings there exists only one distribution law. Moreover, for the ring , where there exist isomorphic groups , , of the order . Finally, we note that every ring contains subfields .
Download Results (CSV)