The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let s ∈ ℝ, p ∈ (0,1] and q ∈ [p,∞). It is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from the Triebel-Lizorkin space to a quasi-Banach space ℬ if and only if
sup: a is an infinitely differentiable (p,q,s)-atom of < ∞,
where the (p,q,s)-atom of is as defined by Han, Paluszyński and Weiss.
An RD-space is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type having “dimension” , there exists a such that for certain classes of distributions, the quasi-norms of their radial maximal functions and grand maximal functions are equivalent when . This result yields a radial maximal function characterization for Hardy spaces on .
The multilinear Calderón-Zygmund theory is developed in the setting of RD-spaces which are spaces of homogeneous type equipped with measures satisfying a reverse doubling condition. The multiple-weight multilinear Calderón-Zygmund theory in this context is also developed in this work. The bilinear T1-theorems for Besov and Triebel-Lizorkin spaces in the full range of exponents are among the main results obtained. Multilinear vector-valued T1 type theorems on Lebesgue spaces, Besov spaces, and Triebel-Lizorkin...
Download Results (CSV)