The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

L multipliers and their H-L estimates on the Heisenberg group.

Chin-Cheng Lin — 1995

Revista Matemática Iberoamericana

We give a Hörmander-type sufficient condition on an operator-valued function M that implies the L-boundedness result for the operator T defined by (Tf)^ = Mf^ on the (2n + 1)-dimensional Heisenberg group H. Here ^ denotes the Fourier transform on H defined in terms of the Fock representations. We also show the H-L boundedness of T, ||Tf|| ≤ C||f||, for H under the same hypotheses of L-boundedness.

Bilinear operators associated with Schrödinger operators

Chin-Cheng LinYing-Chieh LinHeping LiuYu Liu — 2011

Studia Mathematica

Let L = -Δ + V be a Schrödinger operator in d and H ¹ L ( d ) be the Hardy type space associated to L. We investigate the bilinear operators T⁺ and T¯ defined by T ± ( f , g ) ( x ) = ( T f ) ( x ) ( T g ) ( x ) ± ( T f ) ( x ) ( T g ) ( x ) , where T₁ and T₂ are Calderón-Zygmund operators related to L. Under some general conditions, we prove that either T⁺ or T¯ is bounded from L p ( d ) × L q ( d ) to H ¹ L ( d ) for 1 < p,q < ∞ with 1/p + 1/q = 1. Several examples satisfying these conditions are given. We also give a counterexample for which the classical Hardy space estimate fails.

The continuity of pseudo-differential operators on weighted local Hardy spaces

Ming-Yi LeeChin-Cheng LinYing-Chieh Lin — 2010

Studia Mathematica

We first show that a linear operator which is bounded on L ² w with w ∈ A₁ can be extended to a bounded operator on the weighted local Hardy space h ¹ w if and only if this operator is uniformly bounded on all h ¹ w -atoms. As an application, we show that every pseudo-differential operator of order zero has a bounded extension to h ¹ w .

Page 1

Download Results (CSV)