Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Range tripotents and order in JBW*-triples

Lina Oliveira — 2010

Banach Center Publications

In a JBW*-triple, i.e., a symmetric complex Banach space possessing a predual, the set of tripotents is naturally endowed with a partial order relation. This work is mainly concerned with this partial order relation when restricted to the subset 𝓡(A) of tripotents in a JBW*-triple B formed by the range tripotents of the elements of a JB*-subtriple A of B. The aim is to present recent developments obtained for the poset 𝓡(A) of the range tripotents relative to A, whilst also providing the necessary...

A characterization of reflexive spaces of operators

Janko BračičLina Oliveira — 2018

Czechoslovak Mathematical Journal

We show that for a linear space of operators ( 1 , 2 ) the following assertions are equivalent. (i) is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map Ψ = ( ψ 1 , ψ 2 ) on a bilattice Bil ( ) of subspaces determined by with P ψ 1 ( P , Q ) and Q ψ 2 ( P , Q ) for any pair ( P , Q ) Bil ( ) , and such that an operator T ( 1 , 2 ) lies in if and only if ψ 2 ( P , Q ) T ψ 1 ( P , Q ) = 0 for all ( P , Q ) Bil ( ) . This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.

Page 1

Download Results (CSV)