Spectral properties and finite pole assignment of linear neutral systems in Banach spaces.
Let A be a semisimple Banach algebra with a linear automorphism σ and let δ: I → A be a σ-derivation, where I is an ideal of A. Then Φ(δ)(I ∩ σ(I)) = 0, where Φ(δ) is the separating space of δ. As a consequence, if I is an essential ideal then the σ-derivation δ is closable. In a prime C*-algebra, we show that every σ-derivation defined on a nonzero ideal is continuous. Finally, any linear map on a prime semisimple Banach algebra with nontrivial idempotents is continuous if it satisfies the σ-derivation...
We establish a q-shift difference analogue of the logarithmic derivative lemma. We also investigate the value distributions of q-shift difference polynomials and the growth of solutions of complex q-shift difference equations.
In this paper we obtain that there are no transcendental entire solutions with finite order of some nonlinear difference equations of different forms.
The Dirichlet boundary value problem for systems of elliptic partial differential equations at resonance is studied. The existence of a unique generalized solution is proved using a new min-max principle and a global inversion theorem.
The purpose of this article is to deal with multiple values and the uniqueness problem for meromorphic mappings from into the complex projective space ℙⁿ(ℂ) sharing hyperplanes. We obtain two uniqueness theorems which improve and extend some known results.
We consider the zero distribution of difference-differential polynomials of meromorphic functions and present some results which can be seen as the discrete analogues of the Hayman conjecture. In addition, we also investigate the uniqueness of difference-differential polynomials of entire functions sharing one common value. Our theorems improve some results of Luo and Lin [J. Math. Anal. Appl. 377 (2011), 441-449] and Liu, Liu and Cao [Appl. Math. J. Chinese Univ. 27 (2012), 94-104].
Page 1