A simple upper bound to the Bayes error probability for feature selection
In this paper, feature selection in multiclass cases for classification of remote-sensing images is addressed. A criterion based on a simple upper bound to the error probability of the Bayes classifier for the minimum error is proposed. This criterion has the advantage of selecting features having a link with the error probability with a low computational load. Experiments have been carried out in order to compare the performances provided by the proposed criterion with the ones of some of the widely...