The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we introduce the concept of monochromatic kernel-perfect digraph, and we prove the following two results:
(1) If D is a digraph without monochromatic directed cycles, then D and each are monochromatic kernel-perfect digraphs if and only if the composition over D of is a monochromatic kernel-perfect digraph.
(2) D is a monochromatic kernel-perfect digraph if and only if for any B ⊆ V(D), the duplication of D over B, , is a monochromatic kernel-perfect digraph.
Download Results (CSV)