The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Odd perfect polynomials over 𝔽 2

Luis H. GallardoOlivier Rahavandrainy — 2007

Journal de Théorie des Nombres de Bordeaux

A perfect polynomial over 𝔽 2 is a polynomial A 𝔽 2 [ x ] that equals the sum of all its divisors. If gcd ( A , x 2 + x ) = 1 then we say that A is odd. In this paper we show the non-existence of odd perfect polynomials with either three prime divisors or with at most nine prime divisors provided that all exponents are equal to 2 .

On a binary recurrent sequence of polynomials

Reinhardt EulerLuis H. GallardoFlorian Luca — 2014

Communications in Mathematics

In this paper, we study the properties of the sequence of polynomials given by g 0 = 0 , g 1 = 1 , g n + 1 = g n + Δ g n - 1 for n 1 , where Δ 𝔽 q [ t ] is non-constant and the characteristic of 𝔽 q is 2 . This complements some results from R. Euler, L.H. Gallardo: On explicit formulae and linear recurrent sequences, Acta Math. Univ. Comenianae, 80 (2011) 213-219.

Page 1

Download Results (CSV)