The paper deals with the quasi-linear ordinary differential equation with . We treat the case when is not necessarily monotone in its second argument and assume usual conditions on and . We find necessary and sufficient conditions for the existence of unbounded non-oscillatory solutions. By means of a fixed point technique we investigate their growth, proving the coexistence of solutions with different asymptotic behaviors. The results generalize previous ones due to Elbert–Kusano, [Acta...
We consider general second order boundary value problems on the whole line of the type , , for which we provide existence, non-existence, multiplicity results. The solutions we find can be reviewed as heteroclinic orbits in the plane dynamical system.
The paper deals with the multivalued boundary value problem for a.a. , , in a separable, reflexive Banach space . The nonlinearity is weakly upper semicontinuous in . We prove the existence of global solutions in the Sobolev space with endowed with the weak topology. We consider the case of multiple solutions of the associated homogeneous linearized problem. An example completes the discussion.
Download Results (CSV)