Quasicoincidence for intuitionistic fuzzy points.
The basic concepts of the theory of intuitionistic fuzzy topological spaces have been defined by D. Çoker and co-workers. In this paper, we define new notions of Hausdorffness in the intuitionistic fuzzy sense, and obtain some new properties, in particular on convergence.
In this paper we define for fuzzy topological spaces a notion corresponding to proto-metrizable topological spaces. We obtain some properties of these fuzzy topological spaces, particularly we give relations with non-archimedean, and metrizable fuzzy topological spaces.
In this paper we define, for fuzzy topology, notions corresponding to finite-to-one and -to-one maps. We study the relationship between these new fuzzy maps and various kinds of fuzzy perfect maps. Also, we show the invariance and the inverse inveriance under the various kinds of fuzzy perfect maps (and the finite-to-one fuzzy maps), of different properties of fuzzy topological spaces.
The aim of this paper is to study some properties of Michálek’s fuzzy topology which are quite different of the classic properties of the Chang’s topology.
Page 1