The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a finite and nontrivial abelian group with . A conjecture of Hamidoune says that if is a sequence of integers, all but at most one relatively prime to , and is a sequence over with , the maximum multiplicity of at most , and , then there exists a nontrivial subgroup such that every element can be represented as a weighted subsequence sum of the form , with a subsequence of . We give two examples showing this does not hold in general, and characterize the counterexamples...
Download Results (CSV)