Representation of finite abelian group elements by subsequence sums
Let be a finite and nontrivial abelian group with . A conjecture of Hamidoune says that if is a sequence of integers, all but at most one relatively prime to , and is a sequence over with , the maximum multiplicity of at most , and , then there exists a nontrivial subgroup such that every element can be represented as a weighted subsequence sum of the form , with a subsequence of . We give two examples showing this does not hold in general, and characterize the counterexamples...