The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We propose and analyze a nonlinear mathematical model of hematopoiesis,
describing the dynamics of stem cell population subject to impulsive
perturbations. This is a system of two age-structured partial differential
equations with impulses. By integrating these equations over the
age, we obtain a system of two nonlinear impulsive differential equations with
several discrete delays. This system describes the evolution of the total
hematopoietic stem cell populations with impulses. We first examine...
We propose and analyze a mathematical model of hematopoietic stem cell dynamics. This model takes
into account a finite number of stages in blood production, characterized by cell maturity levels,
which enhance the difference, in the hematopoiesis process, between dividing cells that
differentiate (by going to the next stage) and dividing cells that keep the same maturity level (by
staying in the same stage). It is described by a system of nonlinear differential equations
with delays. We study...
Download Results (CSV)