Sur certaines équivalences d'homotopies
On sait qu’il y a 144 classes d’homotopies d’applications de dans lui-même dont la restriction à est homotope à l’identité: ce sont des exemples d’applications qui induisent l’identité en homologie et en homotopie. Plus généralement, soit un complexe de Poincaré 1-connexe de dimension , qui n’a pas le type d’homotopie rationnelle de : si est formel, nous montrons que le groupe des classes d’homotopies d’applications de dans , dont la restriction au -squelette est homotope à l’identité,...