The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For each natural number N, we give an example of a Banach space X such that the set of norm attaining N-linear forms is dense in the space of all continuous N-linear forms on X, but there are continuous (N+1)-linear forms on X which cannot be approximated by norm attaining (N+1)-linear forms. Actually,X is the canonical predual of a suitable Lorentz sequence space. We also get the analogous result for homogeneous polynomials.
Let be the set of all closed, convex and bounded subsets of a Banach space X equipped with the Hausdorff metric. In the first part of this work we study the density character of and investigate its connections with the geometry of the space, in particular with a property shared by the spaces of Shelah and Kunen. In the second part we are concerned with the problem of Rolewicz, namely the existence of support sets, for the case of spaces C(K).
Download Results (CSV)