Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Generalizations of coatomic modules

M. KoşanAbdullah Harmanci — 2005

Open Mathematics

For a ring R and a right R-module M, a submodule N of M is said to be δ-small in M if, whenever N+X=M with M/X singular, we have X=M. Let ℘ be the class of all singular simple modules. Then δ(M)=Σ{ L≤ M| L is a δ-small submodule of M} = Re jm(℘)=∩{ N⊂ M: M/N∈℘. We call M δ-coatomic module whenever N≤ M and M/N=δ(M/N) then M/N=0. And R is called right (left) δ-coatomic ring if the right (left) R-module R R(RR) is δ-coatomic. In this note, we study δ-coatomic modules and ring. We prove M=⊕i=1n Mi...

On modules and rings with the restricted minimum condition

M. Tamer KoşanJan Žemlička — 2015

Colloquium Mathematicae

A module M satisfies the restricted minimum condition if M/N is artinian for every essential submodule N of M. A ring R is called a right RM-ring whenever R R satisfies the restricted minimum condition as a right module. We give several structural necessary conditions for particular classes of RM-rings. Furthermore, a commutative ring R is proved to be an RM-ring if and only if R/Soc(R) is noetherian and every singular module is semiartinian.

An intermediate ring between a polynomial ring and a power series ring

M. Tamer KoşanTsiu-Kwen LeeYiqiang Zhou — 2013

Colloquium Mathematicae

Let R[x] and R[[x]] respectively denote the ring of polynomials and the ring of power series in one indeterminate x over a ring R. For an ideal I of R, denote by [R;I][x] the following subring of R[[x]]: [R;I][x]: = i 0 r i x i R [ [ x ] ] : ∃ 0 ≤ n∈ ℤ such that r i I , ∀ i ≥ n. The polynomial and power series rings over R are extreme cases where I = 0 or R, but there are ideals I such that neither R[x] nor R[[x]] is isomorphic to [R;I][x]. The results characterizing polynomial rings or power series rings with a certain ring...

Page 1

Download Results (CSV)