The main result: the dual of separable Banach space X contains a total subspace which is not norming over any infinite-dimensional subspace of X if and only if X has a nonquasireflexive quotient space with a strictly singular quotient mapping.
Isometric Sobolev spaces on finite graphs are characterized. The characterization implies that the following analogue of the Banach-Stone theorem is valid: if two Sobolev spaces on 3-connected graphs, with the exponent which is not an even integer, are isometric, then the corresponding graphs are isomorphic. As a corollary it is shown that for each finite group and each p which is not an even integer, there exists n ∈ ℕ and a subspace whose group of isometries is the direct product × ℤ₂.
The paper is devoted to the class of Fréchet spaces which are called prequojections. This class appeared in a natural way in the structure theory of Fréchet spaces. The structure of prequojections was studied by G. Metafune and V. B. Moscatelli, who also gave a survey of the subject. Answering a question of these authors we show that their result on duals of prequojections cannot be generalized from the separable case to the case of spaces of arbitrary cardinality. We also introduce a special class...
Download Results (CSV)