The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Théorèmes de slice et holonomie des feuilletages riemanniens singuliers

Pierre MolinoM. Pierrot — 1987

Annales de l'institut Fourier

Soit ( M , ) un feuilletage riemannien sur une variété compacte; est le feuilletage singulier défini par les adhérences des feuilles ( F , ) le feuilletage induit sur une adhérence générique. On étudie le cas où ( F , ) n’a pas de champ transverse non trivial. Alors l’espace quotient W = M / a une structure naturelle de variété de Sataké, de manière que la projection M W soit un morphisme (de variétés de Sataké) avec pliage autour des adhérences singulières.

Page 1

Download Results (CSV)