The search session has expired. Please query the service again.
We introduce a property for a couple of topologies that allows us to give simple proofs of some classic results about Borel sets in Banach spaces by Edgar, Schachermayer and Talagrand as well as some new results. We characterize the existence of Kadec type renormings in the spirit of the new results for LUR spaces by Moltó, Orihuela and Troyanski.
We study the class of descriptive compact spaces, the Banach spaces generated by descriptive compact subsets and their relation to renorming problems.
We show that in a super-reflexive Banach space, the conditionality constants of a quasi-greedy basis ℬ grow at most like for some 0 < ε < 1. This extends results by the third-named author and Wojtaszczyk (2014), where this property was shown for quasi-greedy bases in for 1 < p < ∞. We also give an example of a quasi-greedy basis ℬ in a reflexive Banach space with .
Download Results (CSV)