The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The notion of quasi-p-boundedness for p ∈ is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in can be defined in terms of quasi-p-pseudocompactness. For p ∈ , we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × is bounded in X × , if and only if , where is the set of Rudin-Keisler predecessors of p.
Download Results (CSV)