The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The article contains no abstract
For any positive integer n let ϕ(n) and σ(n) be the Euler function of n and the sum of divisors of n, respectively. In [5], Mąkowski and Schinzel conjectured that the inequality σ(ϕ(n)) ≥ n/2 holds for all positive integers n. We show that the lower density of the set of positive integers satisfying the above inequality is at least 0.74.
Download Results (CSV)