The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The idempotent multipliers on Sobolev spaces on the torus in the L¹ and uniform norms are characterized in terms of the coset ring of the dual group of the torus. This result is deduced from a more general theorem concerning certain translation invariant subspaces of vector-valued function spaces on tori.
We characterize those anisotropic Sobolev spaces on tori in the and uniform norms for which the idempotent multipliers have a description in terms of the coset ring of the dual group. These results are deduced from more general theorems concerning invariant projections on vector-valued function spaces on tori. This paper is a continuation of the author’s earlier paper [W].
Let E be a Banach space. Let be the Sobolev space of E-valued functions on with the norm . It is proved that if then there exists a sequence such that ; ; and for m = 1, 2,..., where b is an absolute constant independent of f and E. The result is applied to prove various refinements of the Sobolev type embedding . In particular, the embedding into Besov spaces is proved, where for 1 < p ≤ d/(d-1), d=1,2,... The latter embedding in the scalar case is due to Bourgain and Kolyada....
Download Results (CSV)