The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

A new version of Local-Global Principle for annihilations of local cohomology modules

K. KhashyarmaneshM. YassiA. Abbasi — 2004

Colloquium Mathematicae

Let R be a commutative Noetherian ring. Let and be ideals of R and let N be a finitely generated R-module. We introduce a generalization of the -finiteness dimension of f ( N ) relative to in the context of generalized local cohomology modules as f ( M , N ) : = i n f i 0 | ( 0 : R H i ( M , N ) ) , where M is an R-module. We also show that f ( N ) f ( M , N ) for any R-module M. This yields a new version of the Local-Global Principle for annihilation of local cohomology modules. Moreover, we obtain a generalization of the Faltings Lemma.

Page 1

Download Results (CSV)