On some classes of good quotient relations.
For a class of graphs we say that it is globally determined if any two nonisomorphic graphs from that class have nonisomorphic globals. We will prove that the class of so called CCB graphs and the class of finite forests are globally determined.
This paper introduces the notion of a strong retract of an algebra and then focuses on strong retracts of unary algebras. We characterize subuniverses of a unary algebra which are carriers of its strong retracts. This characterization enables us to describe the poset of strong retracts of a unary algebra under inclusion. Since this poset is not necessarily a lattice, we give a necessary and sufficient condition for the poset to be a lattice, as well as the full description of the poset.
Page 1