The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Linearization of Arbitrary products of classical orthogonal polynomials

Mahouton HounkonnouSaid BelmehdiAndré Ronveaux — 2000

Applicationes Mathematicae

A procedure is proposed in order to expand w = j = 1 N P i j ( x ) = k = 0 M L k P k ( x ) where P i ( x ) belongs to aclassical orthogonal polynomial sequence (Jacobi, Bessel, Laguerre and Hermite) ( M = j = 1 N i j ). We first derive a linear differential equation of order 2 N satisfied by w, fromwhich we deduce a recurrence relation in k for the linearizationcoefficients L k . We develop in detail the two cases [ P i ( x ) ] N , P i ( x ) P j ( x ) P k ( x ) and give the recurrencerelation in some cases (N=3,4), when the polynomials P i ( x ) are monic Hermite orthogonal polynomials.

Page 1

Download Results (CSV)