Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Linearization of Arbitrary products of classical orthogonal polynomials

Mahouton HounkonnouSaid BelmehdiAndré Ronveaux — 2000

Applicationes Mathematicae

A procedure is proposed in order to expand w = j = 1 N P i j ( x ) = k = 0 M L k P k ( x ) where P i ( x ) belongs to aclassical orthogonal polynomial sequence (Jacobi, Bessel, Laguerre and Hermite) ( M = j = 1 N i j ). We first derive a linear differential equation of order 2 N satisfied by w, fromwhich we deduce a recurrence relation in k for the linearizationcoefficients L k . We develop in detail the two cases [ P i ( x ) ] N , P i ( x ) P j ( x ) P k ( x ) and give the recurrencerelation in some cases (N=3,4), when the polynomials P i ( x ) are monic Hermite orthogonal polynomials.

Page 1

Download Results (CSV)