The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 14 of 14

Showing per page

Order by Relevance | Title | Year of publication

A-Rings

Manfred DugasShalom Feigelstock — 2003

Colloquium Mathematicae

A ring R is called an E-ring if every endomorphism of R⁺, the additive group of R, is multiplication on the left by an element of R. This is a well known notion in the theory of abelian groups. We want to change the "E" as in endomorphisms to an "A" as in automorphisms: We define a ring to be an A-ring if every automorphism of R⁺ is multiplication on the left by some element of R. We show that many torsion-free finite rank (tffr) A-rings are actually E-rings. While we have an example of a mixed...

An extension of Zassenhaus' theorem on endomorphism rings

Manfred DugasRüdiger Göbel — 2007

Fundamenta Mathematicae

Let R be a ring with identity such that R⁺, the additive group of R, is torsion-free. If there is some R-module M such that R M R ( = R ) and E n d ( M ) = R , we call R a Zassenhaus ring. Hans Zassenhaus showed in 1967 that whenever R⁺ is free of finite rank, then R is a Zassenhaus ring. We will show that if R⁺ is free of countable rank and each element of R is algebraic over ℚ, then R is a Zassenhaus ring. We will give an example showing that this restriction on R is needed. Moreover, we will show that a ring due to A....

Page 1

Download Results (CSV)