The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Collineation group as a subgroup of the symmetric group

Fedor BogomolovMarat Rovinsky — 2013

Open Mathematics

Let ψ be the projectivization (i.e., the set of one-dimensional vector subspaces) of a vector space of dimension ≥ 3 over a field. Let H be a closed (in the pointwise convergence topology) subgroup of the permutation group 𝔖 ψ of the set ψ. Suppose that H contains the projective group and an arbitrary self-bijection of ψ transforming a triple of collinear points to a non-collinear triple. It is well known from [Kantor W.M., McDonough T.P., On the maximality of PSL(d+1,q), d ≥ 2, J. London Math. Soc.,...

A boundedness theorem for morphisms between threefolds

Ekatarina AmerikMarat RovinskyAntonius Van de Ven — 1999

Annales de l'institut Fourier

The main result of this paper is as follows: let X , Y be smooth projective threefolds (over a field of characteristic zero) such that b 2 ( X ) = b 2 ( Y ) = 1 . If Y is not a projective space, then the degree of a morphism f : X Y is bounded in terms of discrete invariants of X and Y . Moreover, suppose that X and Y are smooth projective n -dimensional with cyclic Néron-Severi groups. If c 1 ( Y ) = 0 , then the degree of f is bounded iff Y is not a flat variety. In particular, to prove our main theorem we show the non-existence of a flat 3-dimensional...

Page 1

Download Results (CSV)