The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On the Number of Partitions of an Integer in the m -bonacci Base

Marcia EdsonLuca Q. Zamboni — 2006

Annales de l’institut Fourier

For each m 2 , we consider the m -bonacci numbers defined by F k = 2 k for 0 k m - 1 and F k = F k - 1 + F k - 2 + + F k - m for k m . When m = 2 , these are the usual Fibonacci numbers. Every positive integer n may be expressed as a sum of distinct m -bonacci numbers in one or more different ways. Let R m ( n ) be the number of partitions of n as a sum of distinct m -bonacci numbers. Using a theorem of Fine and Wilf, we obtain a formula for R m ( n ) involving sums of binomial coefficients modulo 2 . In addition we show that this formula may be used to determine the number of partitions...

Page 1

Download Results (CSV)