Let Mm×n(F) be the vector space of all m×n matrices over a field F. In the case where m ≥ n, char(F) ≠ 2 and F has at least five elements, we give a complete characterization of linear maps Φ: Mm×n(F) → Mm×n(F) such that spark(Φ(A)) = spark(A) for any A ∈Mm×n(F).
We collect certain useful lemmas concerning the characteristic map, -invariant sets of matrices, and the relative codimension. We provide a characterization of rank varieties in terms of the characteristic map as well as some necessary and some sufficient conditions for linear subspaces to allow the dominant restriction of the characteristic map.
We define the linear capacity of an algebraic cone, give basic properties of the notion and new formulations of certain known results of the Matrix Theory. We derive in an explicit way the formula for the linear capacity of an irreducible component of the zero cone of a quadratic form over an algebraically closed field. We also give a formula for the linear capacity of the cone over the conjugacy class of a “generic” non-nilpotent matrix.
On a commutative ring R we study outer measures induced by measures on Spec(R). The focus is on examples of such outer measures and on subsets of R that satisfy the Carathéodory condition.
Download Results (CSV)